Many-objective robust decision making for managing an ecosystem with a deeply uncertain threshold response
نویسندگان
چکیده
Managing ecosystems with deeply uncertain threshold responses and multiple decision makers poses nontrivial decision analytical challenges. The problem is imbued with deep uncertainties because decision makers do not know or cannot converge on a single probability density function for each key parameter, a perfect model structure, or a single adequate objective. The existing literature on managing multistate ecosystems has generally followed a normative decision-making approach based on expected utility maximization (MEU). This approach has simple and intuitive axiomatic foundations, but faces at least two limitations. First, a prespecified utility function is often unable to capture the preferences of diverse decision makers. Second, decision makers’ preferences depart from MEU in the presence of deep uncertainty. Here, we introduce a framework that allows decision makers to pose multiple objectives, explore the trade-offs between potentially conflicting preferences of diverse decision makers, and to identify strategies that are robust to deep uncertainties. The framework, referred to as many-objective robust decision making (MORDM), employs multiobjective evolutionary search to identify trade-offs between strategies, re-evaluates their performance under deep uncertainty, and uses interactive visual analytics to support the selection of robust management strategies. We demonstrate MORDM on a stylized decision problem posed by the management of a lake in which surpassing a pollution threshold causes eutrophication. Our results illustrate how framing the lake problem in terms of MEU can fail to represent key trade-offs between phosphorus levels in the lake and expected economic benefits. Moreover, the MEU strategy deteriorates severely in performance for all objectives under deep uncertainties. Alternatively, the MORDM framework enables the discovery of strategies that balance multiple preferences and perform well under deep uncertainty. This decision analytic framework allows the decision makers to select strategies with a better understanding of their expected trade-offs (traditional uncertainty) as well as their robustness (deep uncertainty).
منابع مشابه
Optimal Cropping Pattern Modifications with the Aim of Environmental-Economic Decision Making Under Uncertainty
Sustainability in agricultural is determined by aspects like economy, society and environment. Multi-objective programming (MOP) model has been a widely used tool for studying and analyzing the sustainability of agricultural system. However, optimization models in most applications are forced to use data which is uncertain. Recently, robust optimization has been used as an optimization model th...
متن کاملA weighted metric method to optimize multi-response robust problems
In a robust parameter design (RPD) problem, the experimenter is interested to determine the values of con-trol factors such that responses will be robust or insensitive to variability of the noise factors. Response sur-face methodology (RSM) is one of the effective methods that can be employed for this purpose. Since quality of products or processes is usually evaluated through several quality ...
متن کاملApplication of Ecological Theory to Management of Arid Drylands: An Example from China
Rangeland ecosystems shift across dynamic thresholds between differentecological states in response to natural or human-induced factors. These differentecological states are the result of interactions among climate, soils, grazing history,and management practices. The notion of a single ‘‘pristine’’ final state is onlyconceptual in nature, and because of this, dynamic thresholds and the effects...
متن کاملRobust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based ...
متن کاملThe Design of Inverse Network DEA Model for Measuring the Bullwhip Effect in Supply Chains with Uncertain Demands
Two different bullwhip effects with equal scores may have different sensitivities and production patterns. As a result, the difference between these two seemingly equal scores has been ignored in previous methods (such as frequency response and moving average). So, the present study constructs a model of Inverse Network Data Envelopment Analysis, to introduce the relative and interval scores of...
متن کامل